Hierarchical Control of Multiple DC-Microgrids Clusters
نویسندگان
چکیده
This paper presents a distributed hierarchical control framework to ensure reliable operation of dc microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level, which determines droop coefficients according to the state-of-charge (SOC) of batteries automatically. A small-signal model is developed to investigate effects of the system parameters, constant power loads, as well as line impedance between the MGs on stability of these systems. In the secondary level, a distributed consensus-based voltage regulator is introduced to eliminate the average voltage deviation over the MGs. This distributed averaging method allows the power flow control between the MGs to be achieved at the same time, as it can be accomplished only at the cost of having voltage deviation inside the system. Another distributed policy is employed then to regulate the power flow among the MGs according to their local SOCs. The proposed distributed controllers on each MG communicate with only the neighbor MGs through a communication infrastructure. Finally, the developed small-signal model is expanded for MG clusters with all the proposed control loops. The effectiveness of the proposed hierarchical scheme is verified through detailed hardware-in-the-loop simulations.
منابع مشابه
Voltage Control and Load Sharing in a DC Islanded Microgrid Based on Disturbance Observer
Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status. In this paper, a new nonlinear decentralized back-stepping control strategy f...
متن کاملDecentralised L1 Adaptive Primary Controllers and Distributed Consensus-Based Secondary Control for DC Microgrids with Constant-Power Loads
Constant-power loads are notoriously known to destabilise power systems, such as DC microgrids, due to their negative incremental impedance. This paper equips distributed generation units with decentralised L1 adaptive controllers at the primary level of the microgrid control hierarchy. Necessary and sufficient conditions are provided to local controllers for overall microgrid stability when co...
متن کاملA Repetitive Control- based Approach for Power Sharing among Boost Converters in DC Microgrids
In this paper a repetitive control (RC) approach to improve current sharing between parallel-connected boost converters in DC microgrids is presented. The impact of changes in line impedance on current sharing is investigated. A repetitive controller is designed and connected in series with current controller of the boost converters to control the switching signals such that by regulating of th...
متن کاملNovel Hierarchical Control of VSI-based Microgrids Against Large-Signal Disturbances
This paper provides a novel hierarchical control for VSI-based microgrids. The advantage of the provided control scheme is to maintain the frequency and voltage stability and load sharing against large-signal disturbances. A hierarchical control, consisting of three levels, is described. A new control loop based on PI controller, is presented. The new control loop has a great impact on increasi...
متن کاملSimultaneous Control of Active and Reactive Powers of Vanadium Redox Flow Battery Systems in Flexible Microgrids
This paper discusses the control of flexible microgrids, consisting of a Redox Flow Batteries (RFB) and a new power conditioning system (PCS) for the RFB. Considering the importance of energy storage, this study is essential in power systems that are developed cautiously. RFB is connected to power system by a DC/DC or DC/AC converter to produce a DC voltage. It is very important that this conve...
متن کامل